FUNCTIONS

- 1. Given f(x) = -|x+3| 2
 - a. Sketch f(x)
 - b. Domain: $(-\omega, \infty)$ c. Range: $(-\omega, Z]$

 - d. $f(3) = \frac{8}{100}$

 - e. $f(x+5) = -\frac{1}{x} + 8 2$ f. If f(x) = -3 then $x = \frac{2}{x} \frac{2}{x} \frac{4}{x}$
- a. Graph the piece-wise function:

$$g(x) = \begin{cases} \frac{x}{2} & \text{if } x \ge 4\\ \sqrt{x} & \text{if } 0 < x < 4\\ x^2 & \text{if } x < 0 \end{cases}$$

- b. g(-3) = 9
- c. $g(1) = _/$
- d. g(0) = DNE
- e. Is g(x) a continuous function? How do you know? No, domain does not include zero

- 3. Given the graph of g(x) on the right,
 - a. Estimate g(6) g(0). 6 02.5-0 = 5
 - b. The ratio in part (a) is the slope of a line segment joining two points on the graph. Sketch this line segment.

4. The rate at which water is entering a tank (t > 0) is represented by the given graph. A negative rate means that water is leaving the tank. State the interval(s) on which each of the following holds true:

'a. The volume of water is constant. (O,A) $\forall a \neq e = O$

b. The volume of water is decreasing. (F, I) rate is negative

c. The volume of water is increasing. (A,F)

d. The volume of water is increasing fastest.

5. Given
$$Q(x) = \frac{3x}{x+1}$$
:

a. Where is this function discontinuous?

State the equation of the vertical asymptote

c. State the equation of the horizontal asymptote
$$y = \frac{3}{2}$$

- d. Sketch the graph.
- Write the equation of the inverse of Q(x). (Switch the x & y and then rewrite as y =)

6. Use these functions to evaluate:

$$f(x) = x+1$$
 $g(x) = x^2 + 2x - 3$ $h(x) = 2x - 5$
b. $g(5) = 3$

a.
$$f(3) = 4$$

b.
$$g(5) = 32$$

$$X = \frac{37}{11}$$

$$xy + x = 3y$$

$$y(x-3) = -x$$

c.
$$h(\frac{1}{2}) = -4$$

d.
$$g(-2) = -3$$

$$Y = \frac{-x}{x-3}$$

$$Q(x) = \frac{x}{3-x}$$

e.
$$f(x) + h(x) = 3 \times 4$$

f.
$$g(x)-h(x) = x^2 + \lambda$$

$$g. f(h(1)) = -2$$

h.
$$h(g(-3)) = -5$$

i.
$$h(f(x)) = \partial x - \partial x$$

$$j. \qquad g(f(x)) = \chi^2 + 4\chi$$

TRIGONOMETRY

What you need to know:

- Trig functions and inverse trig functions for all special angles (unit circle)
- Fundamental trig identities (reciprocal, quotient, Pythagorean)
- · Graphs of sine, cosine, tangent
- Domain and range of sine, cosine, tangent
- · How to solve trig equations
- 1. Evaluate without use of a calculator.
- (a) $\tan(\frac{\pi}{6})$ $\frac{\sqrt{3}}{3}$
- (b) $\cos(\frac{\pi}{3})$ $\frac{1}{2}$
- (c) $sin(\pi)$
- (d) $\csc(\frac{\pi}{2})$
- (e) $\sin(\frac{\pi}{2})$
- (f) $\sin(\frac{3\pi}{4})$ $\frac{2}{2}$
- (g) $\cos(\pi)$
- (h) $tan(\frac{\pi}{2})$ undefined
- (i) $\cos(\frac{7\pi}{6}) \frac{5\pi}{3}$
- (j) $\tan(\frac{7\pi}{4})$ -1
- 2. Find the exact values without use of a calculator.
 - (a) $\sin^{-1}(\frac{\sqrt{3}}{2})$
- (d) $\arctan(-\sqrt{3})$ $-\frac{3}{3}$ $\left(not \frac{517}{3}\right)$
- (b) $\cos^{-1}(\frac{1}{2})$
- (e) sec⁻¹(-2)
- (c) $\arcsin(-\frac{\sqrt{2}}{2})$
- (f) sin(cos-10.6) = . 9 (Use Pythocorean Theorem)

EQUATION OF A LINE

Write an equation of the line described in both slope intercept form and point slope form.

- 1. The line through (1, 4) and (3, 6) y-4 = 1(x-1) or y-6 = 1(x-3)y=x+3
- 5. The line with slope 8 and y-intercept 9 y = 8x + 9 y = 9 (x 0)

4=5x+2

7. The line through (-2, -8) and parallel to the line y = 5x - 3 y + 8 = 5(x+2)

- 2. The line through (5, -2) and (-5, 4) $(-2 \frac{3}{5}(x-5)) \text{ or } (y-4 \frac{3}{5}(x-5))$ $(y = -\frac{3}{5}(x-1))$
- 4. The line with slope $\frac{7}{2}$ and passing through (-2, -5) $4 + 5 = \frac{7}{4}(x+2)$ $4 = \frac{7}{4}x + 2$
- 6. The line with slope $-\frac{3}{8}$ passing through (0, 5) $y = -\frac{3}{8}x + 5$ $y 5 = -\frac{3}{8}(x 0)$
- 8. The line perpendicular to $y = \frac{4}{5}x 9$ and passing through (8, -13) $y + 13 = -\frac{5}{4}(x - 8)$ $y = -\frac{5}{4}x - 3$

EXPONENTS

SIMPLIFY COMPLETELY:

$$1. \qquad 2\left(x^4y^3\right)^0$$

 \mathcal{A}

$$2. \qquad \frac{15x^2}{5\sqrt{x}}$$

$$4. \qquad \frac{\frac{2}{x^2}}{\frac{10}{x^5}}$$

5.
$$(32)^{-\frac{2}{5}}$$

3.
$$\frac{3c^2d^3}{\left(3cd^{-2}\right)^2}$$

$$6. \qquad \sqrt{x} * \sqrt[3]{x} * \sqrt[4]{x}$$

7.
$$\frac{x^2 - x + 7}{x}$$

$$8. \ \frac{x^3 - x + 1}{\sqrt{x}}$$

$$9. \ \frac{\frac{1}{x+h} - \frac{1}{x}}{3h}$$

$$\frac{-1}{3\times(x+h)}$$

10.
$$\frac{\frac{a}{a+1} + \frac{1}{a}}{\frac{1}{a} + \frac{1}{a+1}}$$

$$\frac{a^2+a+1}{2a+1}$$

0

12.
$$\ln e^7$$

14. e^0

15.
$$e^{\ln x}$$

Х

LOGARITHMS

Solve for x.

1.
$$\log_2 x = 3$$

2.
$$\log_{\frac{1}{2}} x = 3$$

3.
$$\log_3 81 = x$$

4.
$$\log_3(-9) = x$$

5.
$$\log_x 16 = -4$$

6.
$$\log_x(\frac{1}{25}) = \frac{1}{2}$$

7.
$$2^x = 3$$

$$x = \frac{\ln 3}{\ln a}$$

8.
$$2.43 \cdot 10^x = 1.84$$

9.
$$ln(x+5) = -ln(x-1) - ln(x+1)$$

10.
$$3^{x+4} = 101$$

11.
$$4e^{x+2} = 32$$

12.
$$1.1 + \ln x^2 = 6$$

1.
$$4(x+3)-3=2(4-3x)-4$$

5.
$$4t^3 - 12t^2 + 8t - 24 = 0$$

$$2. 15 + x - 2x^2 = 0$$

6.
$$\frac{4}{x-3} - \frac{4}{x} = 1$$

 $x = -3.275$

$$3. 5x^4 - 12x^3 = 0$$

7.
$$\sqrt{x-2} - 8 = 0$$

4.
$$\frac{1}{x-2}$$
 = 3

8.
$$(x+2)^{3/4} = 27$$

